Introduction to Language Modeling

H. Andrew Schwartz

CSE538 - Spring 2025

-- assigning a probability to sequences of words.

-- assigning a probability to sequences of words.

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$: probability of a sequence of words

-- assigning a probability to sequences of words.

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$: probability of a sequence of words

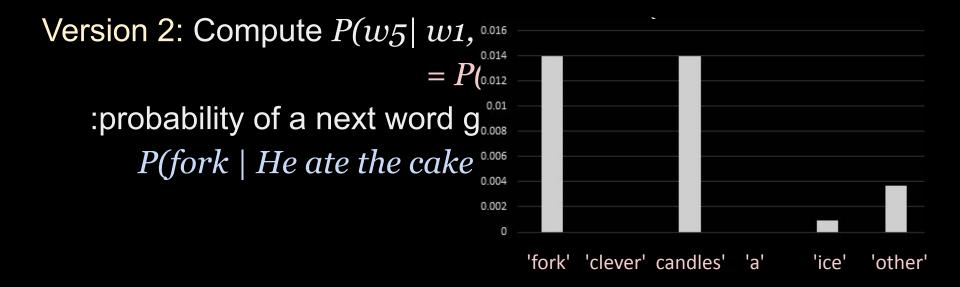
Version 2: Compute P(w5 | w1, w2, w3, w4) $= P(w_n | w_1, w_2, ..., w_{n-1})$:probability of a next word given history

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) = ?
```

Version 2: Compute
$$P(w5 | w1, w2, w3, w4)$$

$$= P(w_n | w_1, w_2, ..., w_{n-1})$$
:probability of a next word given history
$$P(fork | He \ ate \ the \ cake \ with \ the) = ?$$

Version 1: Compute P(w1, w2, w3, w4, w5) = P(W):probability of a sequence of words $P(He \ ate \ the \ cake \ with \ the \ fork) = ?$

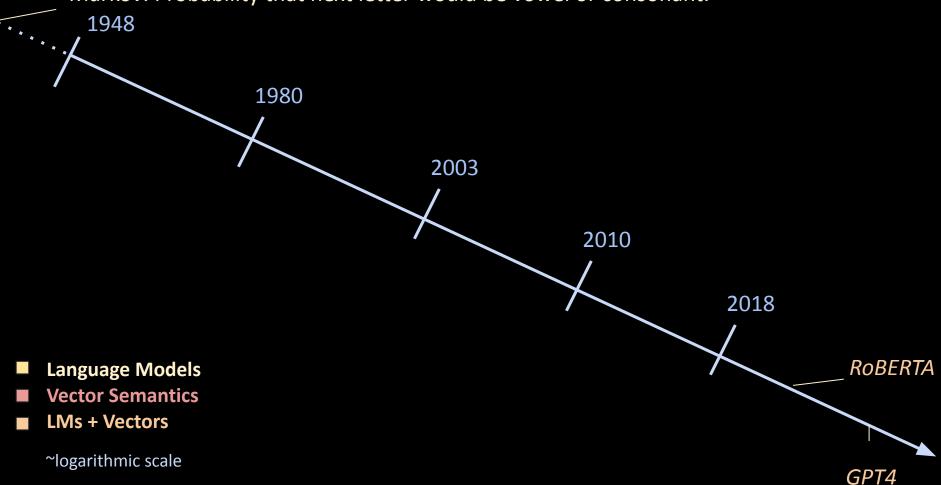


Applications:

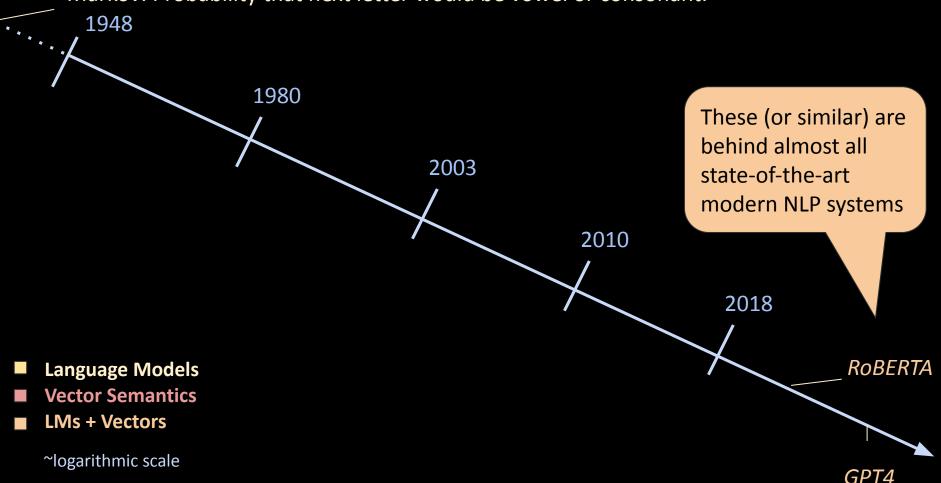
- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say? "eyes aw of an"

(example from Jurafsky, 2017; did you say "giraffe ski 2,017"?)

1913 Markov: Probability that next letter would be vowel or consonant.



1913 Markov: Probability that next letter would be vowel or consonant.

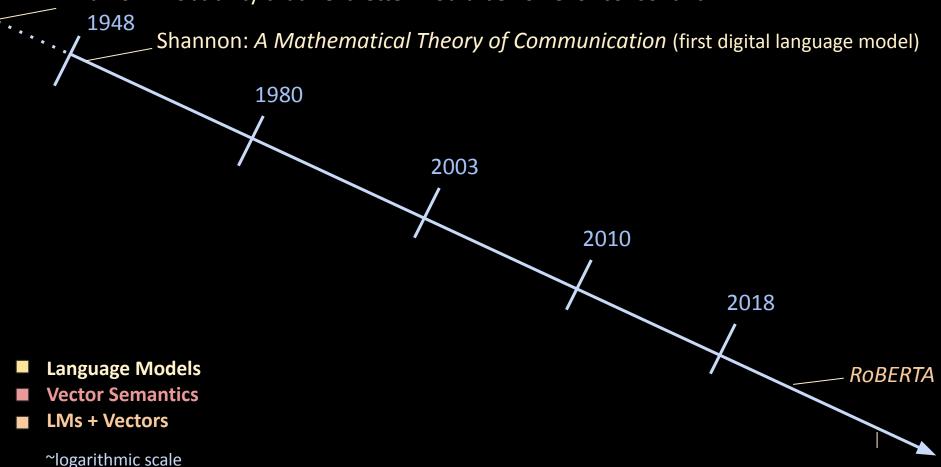


1913 Markov: Probability that next letter would be vowel or consonant.



GPT4

1913 Markov: Probability that next letter would be vowel or consonant.



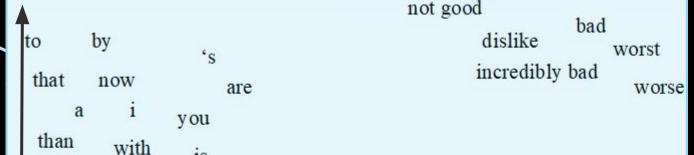
GPT4

1913 Markov: Probability that next letter would be vowel or consonant.

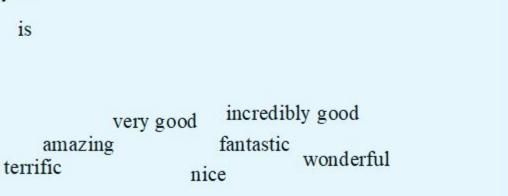
Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: The Measurement of Meaning

1948

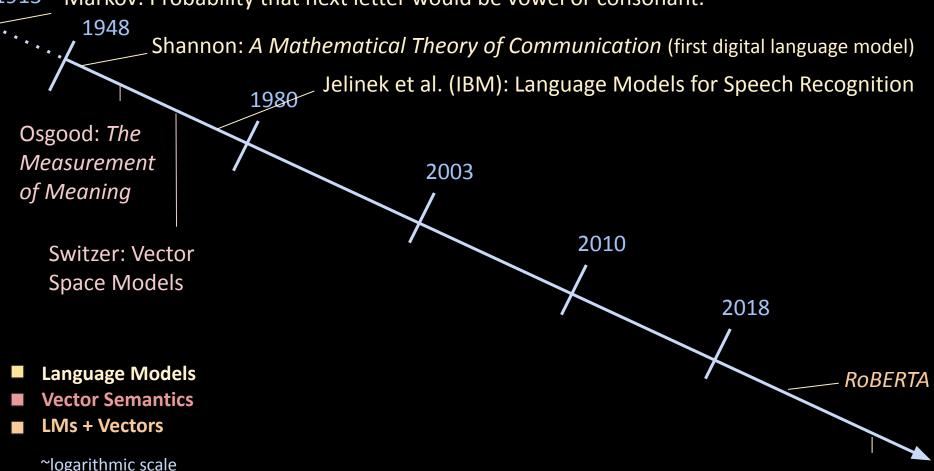


- Language Models
- Vector Semantics
- LMs + Vectors



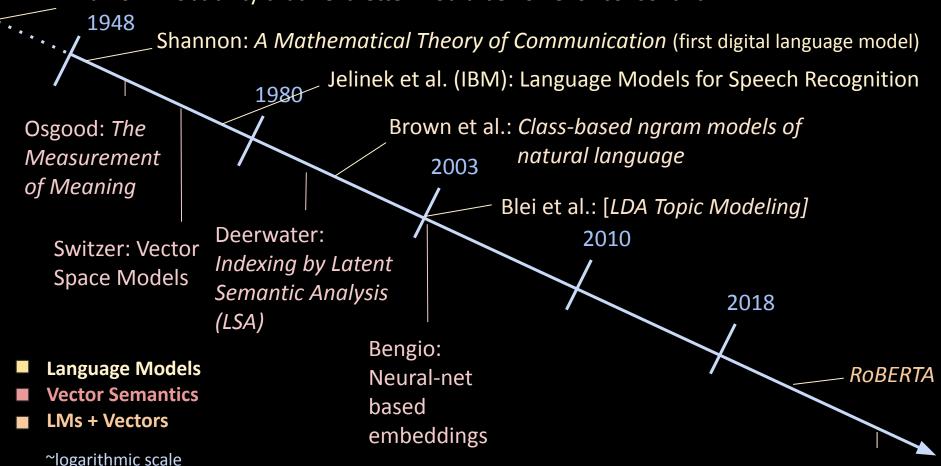
onno

1913 Markov: Probability that next letter would be vowel or consonant.

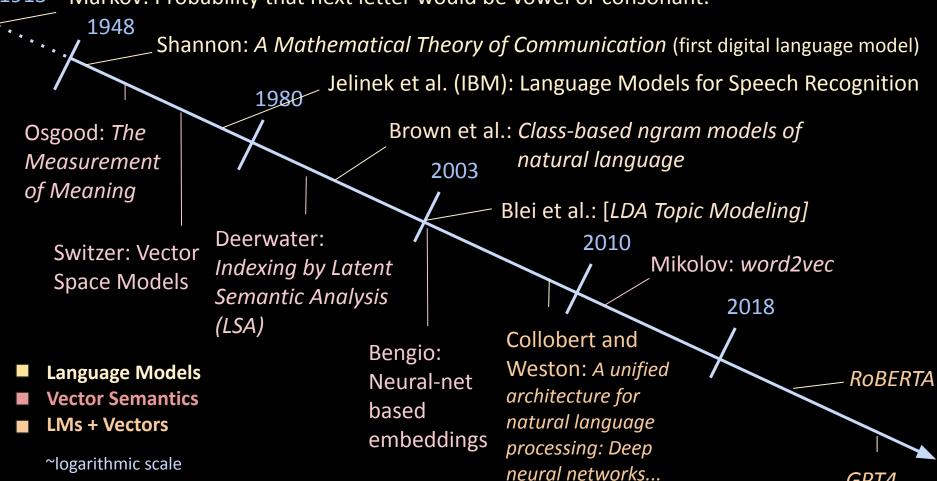


GPT4

1913 Markov: Probability that next letter would be vowel or consonant.

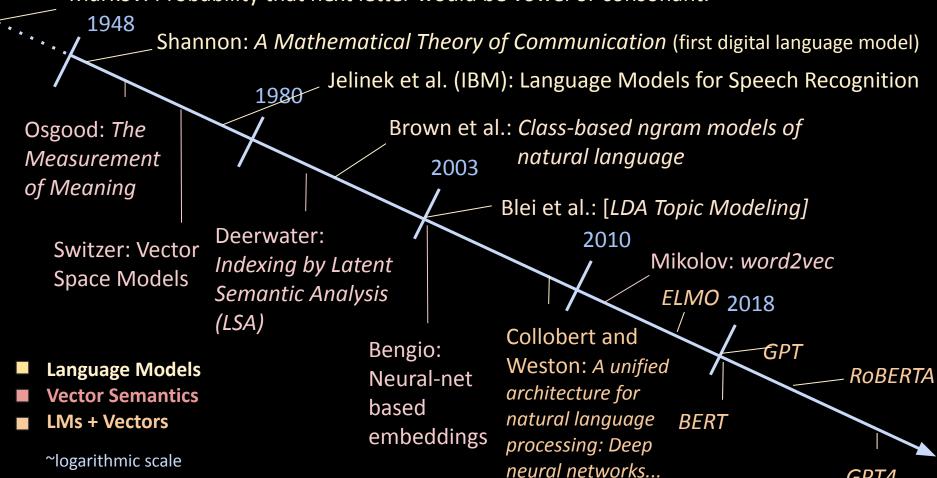


1913 Markov: Probability that next letter would be vowel or consonant.



GPT4

1913 Markov: Probability that next letter would be vowel or consonant.



GPT4

Version 1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$: probability of a sequence of words

Version 2: Compute P(w5|w1, w2, w3, w4) $= P(w_n|w_1, w_2, ..., w_{n-1})$:probability of a next word given history

Simple Solution

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \text{ ate the cake with the fork}) =
```

```
count(He ate the cake with the fork)
count(* * * * * * * *)
```

```
Version 1: Compute P(w1, w2, w3, w4, w5) = P(W)
:probability of a sequence of words
P(He \ ate \ the \ cake \ with \ the \ fork) =
```

total number of observed 7grams

count(He ate the cake with the fork)
count(* * * * * * * * * * *)

```
V1:
         P(He ate the cake with the fork) =
                     count(He ate the cake with the fork)
                     count( * * * * *
V2:
         P(fork \mid He \text{ ate the cake with the}) =
                     <u>count(He ate the cake with the fork)</u>
                     count(He ate the cake with the *)
```

V1:

Problem: even the Web isn't large enough to enable good estimates of most phrases.

```
P(He ate the cake with the fork) =
```

```
count(He ate the cake with the fork)
count(* * * * * * * *)
```

V2:

```
P(fork | He ate the cake with the) =
```

```
count(He ate the cake with the fork)
count(He ate the cake with the *)
```

Problem: even the Web isn't large enough to enable good estimates of most phrases.

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

A solution: Estimate from shorter sequences.

Problem: even the Web isn't large enough to enable good estimates of most phrases.

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

A solution: Estimate from shorter sequences.

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(B|A) = P(B,A) / P(A) \Leftrightarrow P(A)P(B|A) = P(B,A) = P(A,B)$$

$$P(A,B) = P(A)P(B|A)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(A,B) = P(A)P(B|A)$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(A,B) = P(A)P(B|A)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

- V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$
- V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Observation: V1 and V2 are equivalent!

$$P(A,B) = P(A)P(B|A)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule:

$$P(X_1, X_2,..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$$

V1: Compute P(w1, w2, w3, w4, w5) = P(W)

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

$$P(A,B) = P(A)P(B|A)$$

$$P(A, B, C) = P(A)P(B|A)P(C|A, B)$$

The Chain Rule:
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

$$P(X_1, X_2,..., X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...P(X_n|X_1, ..., X_{n-1})$$

V1: Compute $P(w_1, w_2, w_3, w_4, w_5) = P(W)$

V2: Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Observation: Solving V2 give us V1!

$$P(A,B) = P(A)P(B|A)$$
 $P(A,B, LM \text{ version 1} LM \text{ version 2}$
 $P(X1, X2,..., Xn) = P(X1, X2,..., Xn-1)P(Xn|X1,..., Xn-1)$
 $P(X1, X2,..., Xn) = P(X1)P(X2|X1)P(X3|X1, X2)...P(Xn|X1,..., Xn-1)$

Compute
$$P(w5|\ w1, w2, w3, w4) = P(w_n|\ w_1, w_2, ..., w_{n-1})$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

A solution: Estimate from shorter sequences.

Chain-Rule:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

Compute
$$P(w5|w1, w2, w3, w4) = P(w_n|w_1, w_2, ..., w_{n-1})$$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

A solution: Estimate from shorter sequences.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i | X_1, X_2, ..., X_{i-1})$$

Markov Assumption:

$$P(Xn | X_1..., X_{n-1}) \approx P(X_n | X_{n-k}, ..., X_{n-1})$$
 where $k < n$

Compute $P(w5 | w1, w2, w3, w4) = P(w_n | w_1, w_2, ..., w_{n-1})$

Problem: even the Web isn't large enough to enable good estimates of most phrases.

A solution: Estimate from shorter sequences.

$$P(X_1, X_2, ..., X_n) = \prod P(X_i | X_1, X_2, ..., X_{i-1})$$

Markov Assumption:

$$P(Xn | X_1,..., X_{n-1}) \approx P(X_n | X_{n-k},..., X_{n-1})$$
 where $k < n$

Thus, $P(X_1,...,X_n) \approx P(X_n | X_{n-k},...,X_{n-1})P(X_{n-1} | X_{n-1})-k,...,X_{n-2})...P(X_1)$

Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Unigram Model: k = 0;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i)$$

Compute $P(w_5|w_1, w_2, w_3, w_4) = P(w_n|w_1, w_2, ..., w_{n-1})$

Bigram Model: k = 1;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1})$$

Language Modeling: How to Estimate?

Compute $P(w5|w1, w2, w3, w4) = P(w_n|w_1, w_2, ..., w_{n-1})$

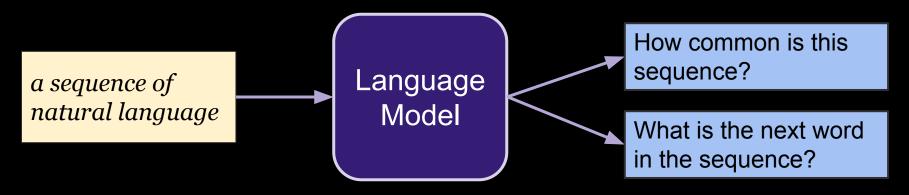
Bigram Model: k = 1;
$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1})$$

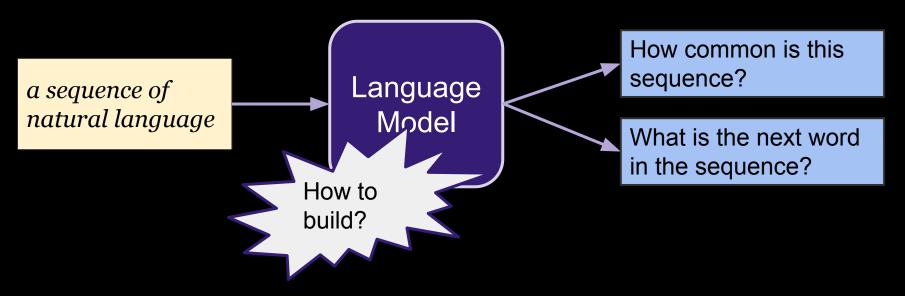
Example generated sentence:

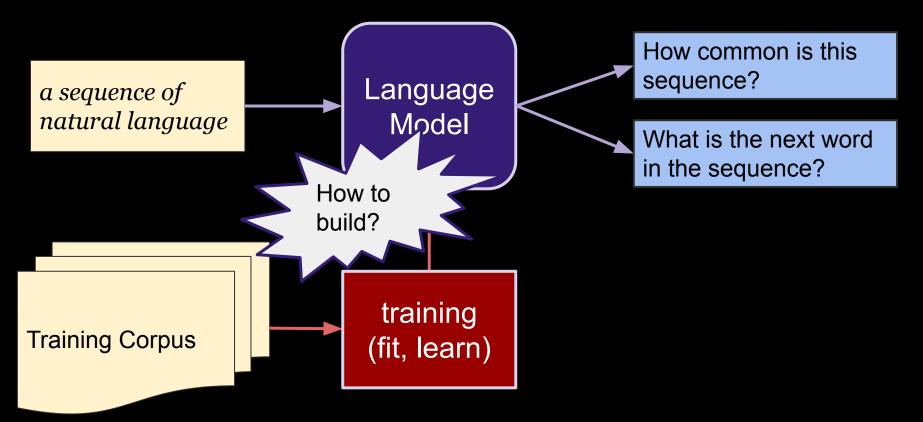
outside, new, car, parking, lot, of, the, agreement, reached

```
P(X1 = "outside", X2 = "new", X3 = "car", ....)

\approx P(X1 = "outside") * P(X2 = "new" | X1 = "outside) * P(X3 = "car" | X2 = "new") * ...
```







Language Mo

Building a model

a sequence of natural language

Food corpus from Jurafsky (2018). Samples:

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i'm looking for

tell me about chez panisse

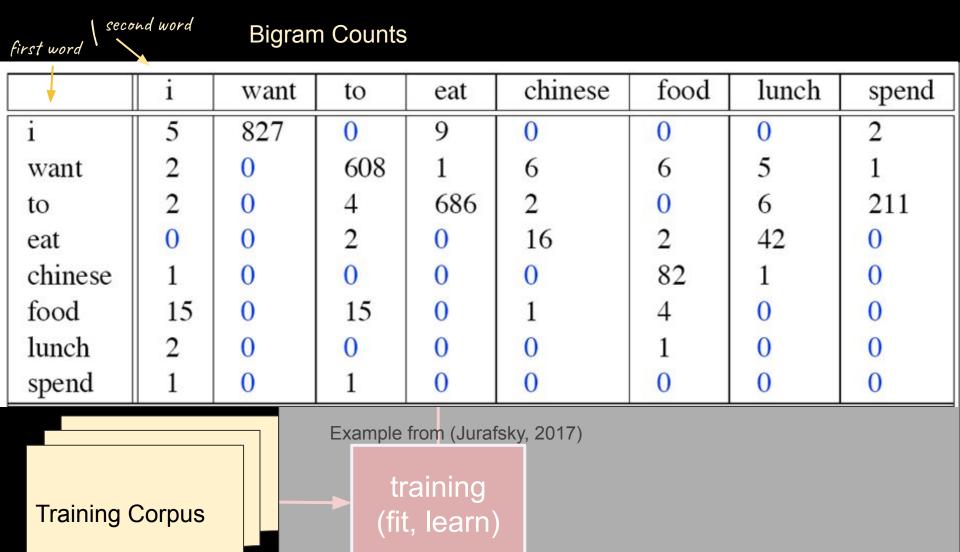
can you give me a listing of the kinds of food that are available

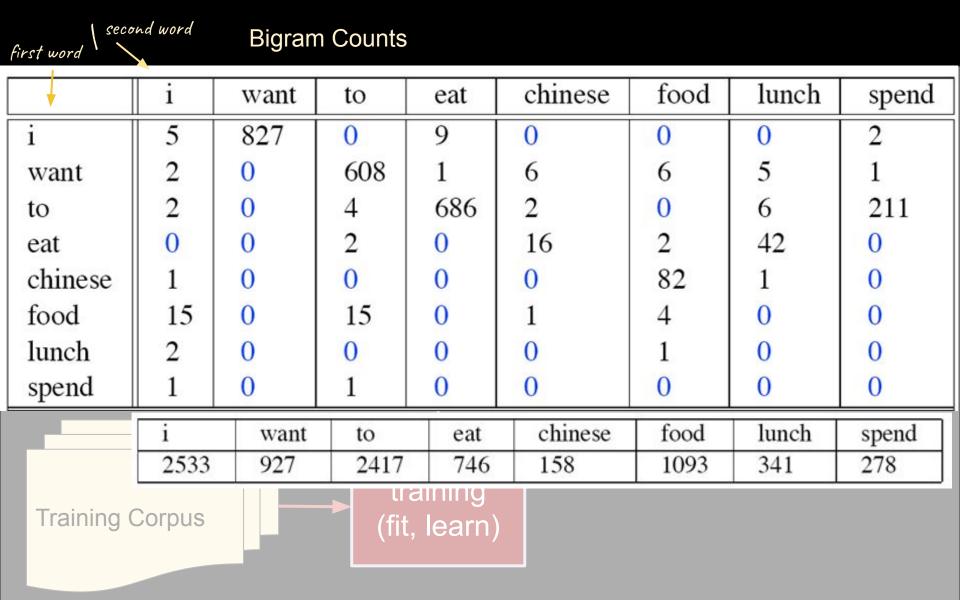
i'm looking for a good place to eat breakfast

when is caffe venezia open during the day

Training Corpus

training (fit, learn)





first word		Bigram	Counts						
<u> </u>	i	want	to	eat	chinese	food	lunch	spend	
i	5	827	0	9	0	0	0	2	
want	2	0	608	1	6	6	5	1	
to	2	0	4	686	2	0	6	211	
eat	0	0	2	0	16	2	42	0	
chinese	1	0	0	0	0	82	1	0	
food	15	0	15	0	1	4	0	0	
lunch	2	0	0	0	0	1	0	0	
spend	1	0	1	0	0	0	0	0	
	i	want	to	eat	chinese	food	lunch	spend	
	2533	927	2417	746	158	1093	341	278	
Bigram model: $P(X_1, X_2,, X_n) = \prod_{i=1}^n P(X_i X_{i-1})$ Need to estimate: $P(Xi X_{i-1}) = \text{count}(X_{i-1} X_i) / \text{count}(X_{i-1})$									

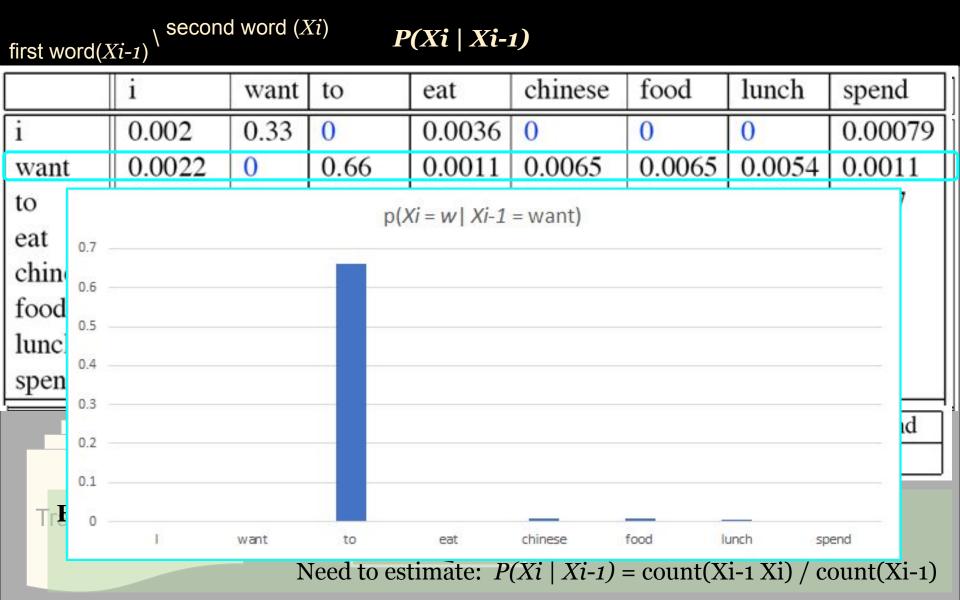
P(Xi | Xi-1)

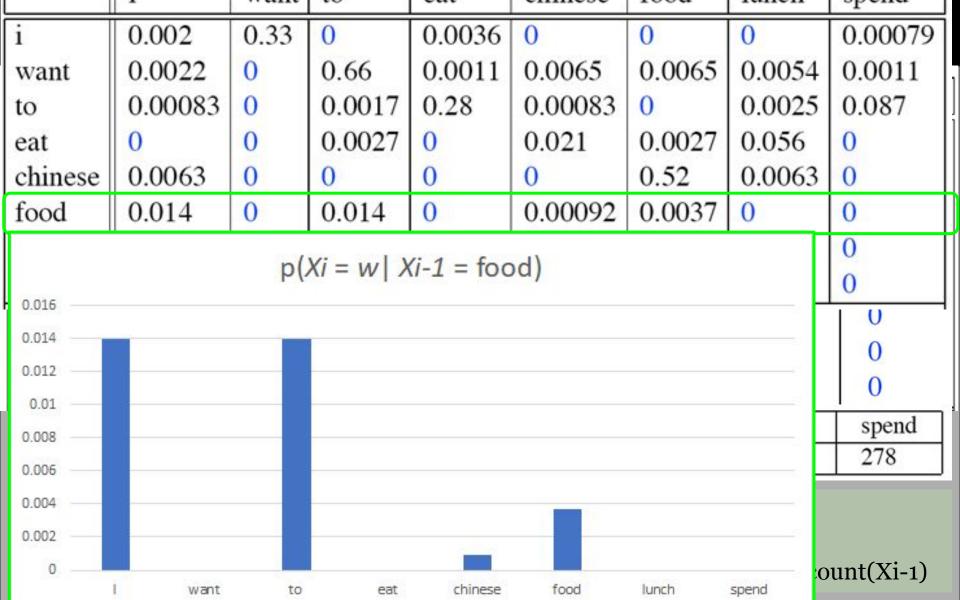
*	1	want	ιο	cat	Cilliese	1000	Tunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0
		V.	1 22	Congress Audio				
	1	want	to	eat	chinese	food	lunch	spend

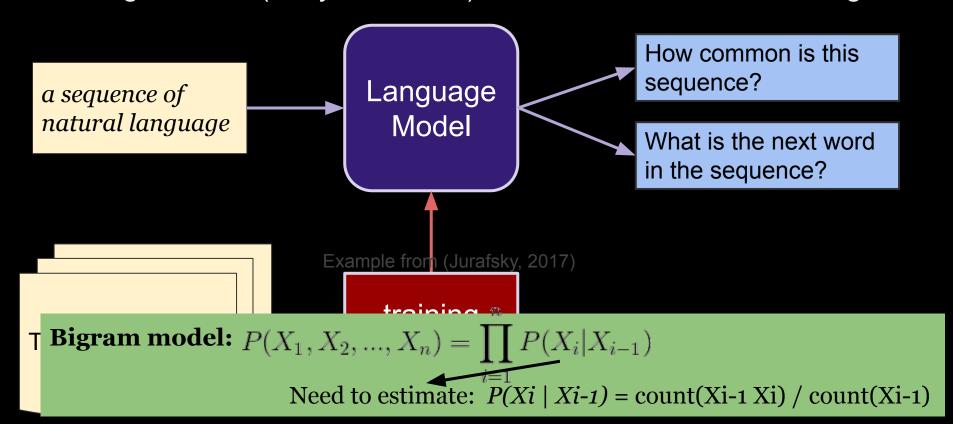
							2
i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigram model: $P(X_1, X_2, ..., X_n) = \prod P(X_i | X_{i-1})$

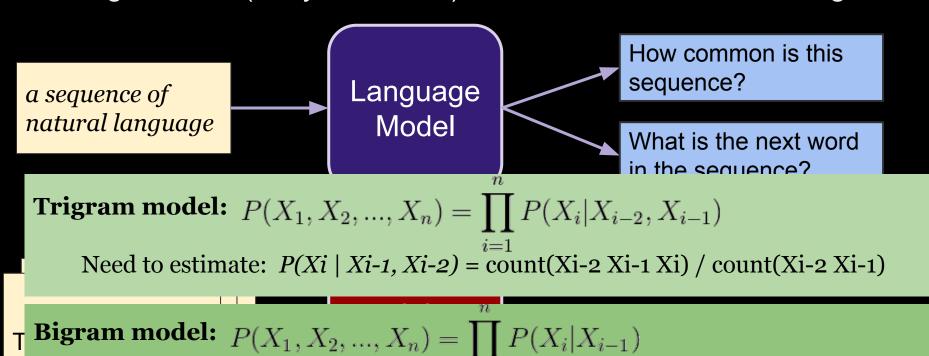
Need to estimate: $P(Xi \mid Xi-1) = \text{count}(Xi-1 \mid Xi) / \text{count}(Xi-1)$



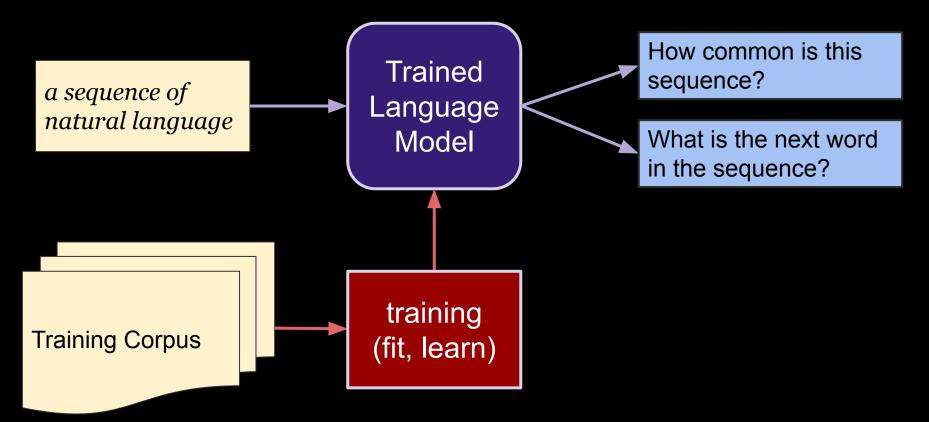


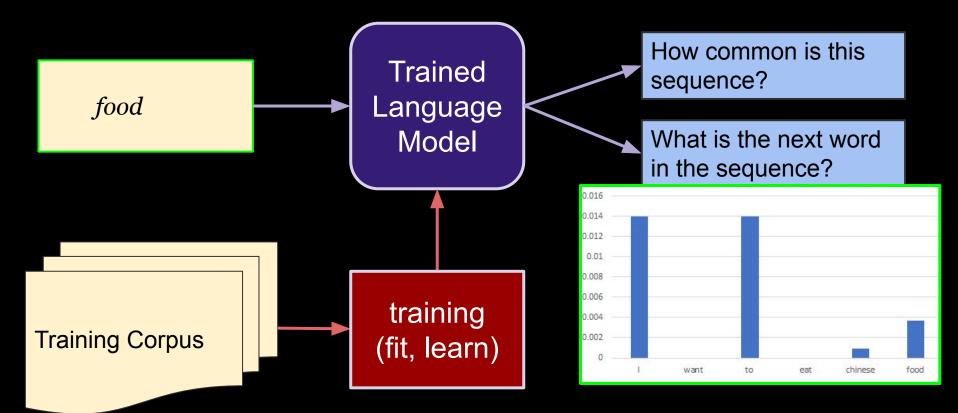


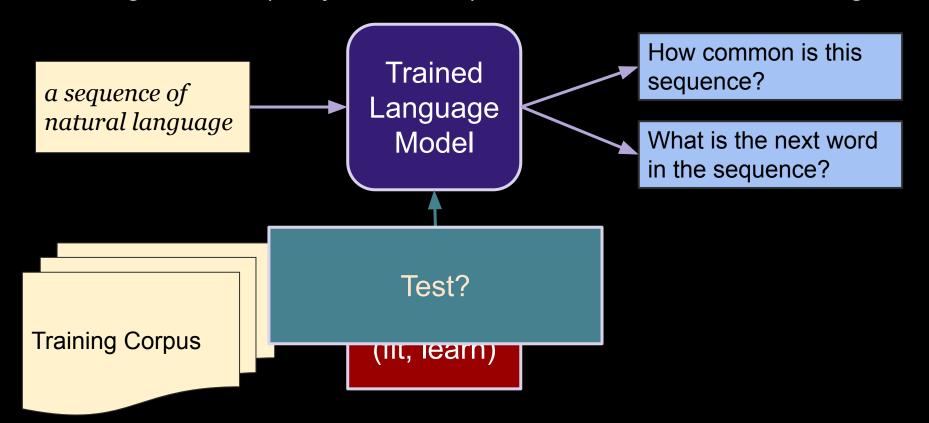
Building a model (or system / API) that can answer the following:

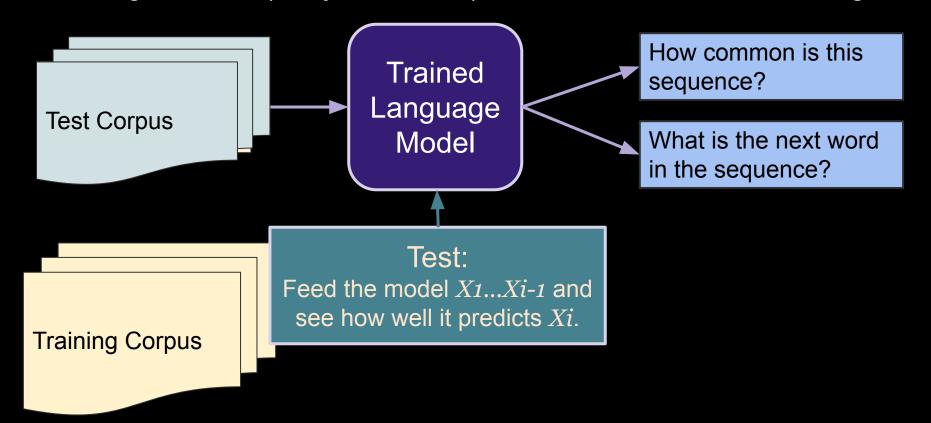


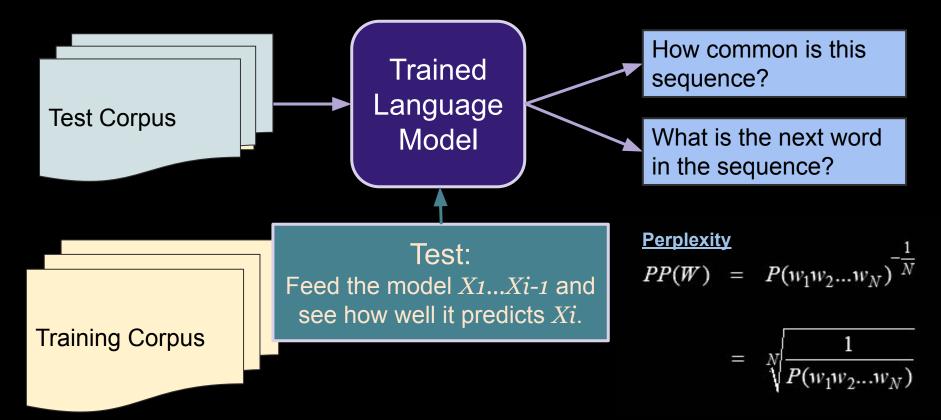
Need to estimate: $P(Xi \mid Xi-1) = \text{count}(Xi-1 \mid Xi) / \text{count}(Xi-1)$

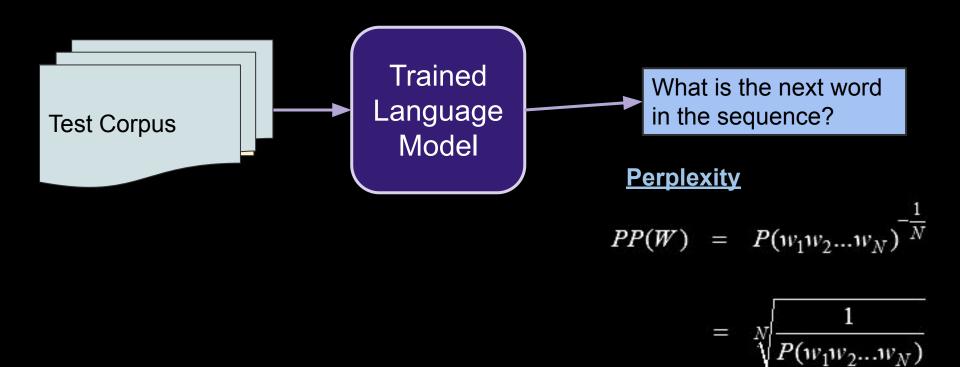


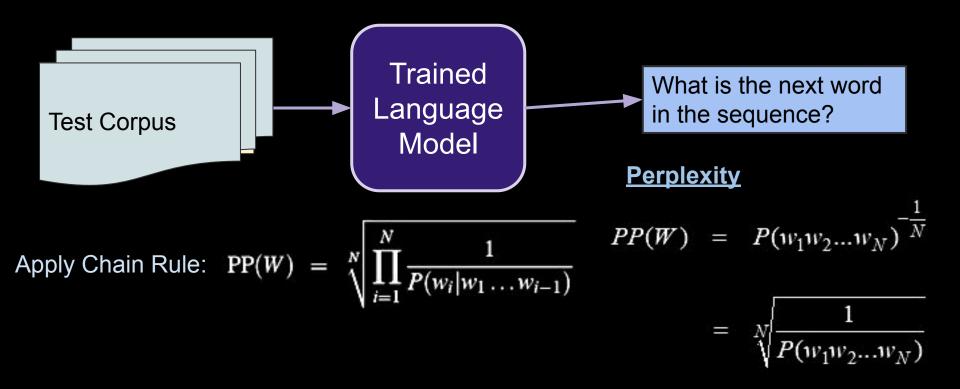


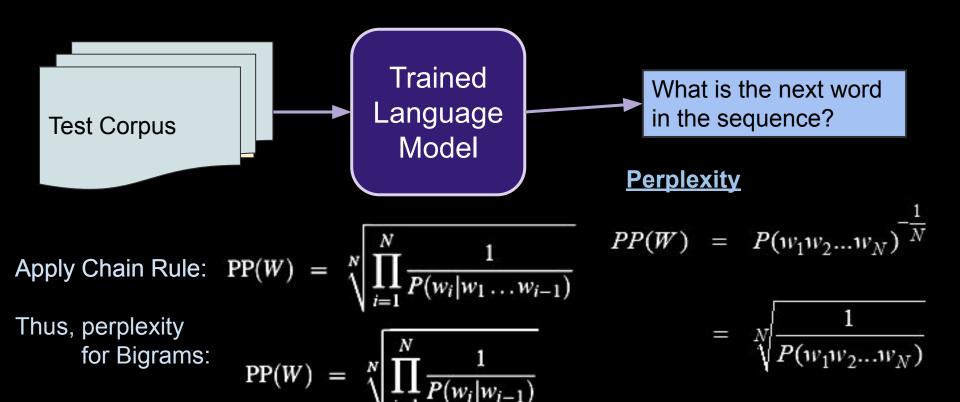






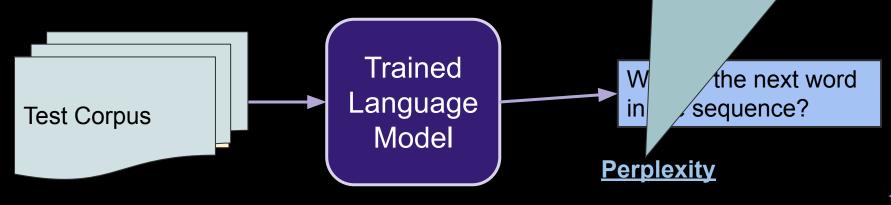






- Reasoning:
 - Inverse of probability

 (i.e. minimize perplexity = maximize likelihood)
 - 2) (weighted) average branching factor



Apply Chain Rule:
$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

Thus, perplexity for Bigrams:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

$$PP(W) = P(w_1w_2...w_N)$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$



- Reasoning:
- Inverse of probability (i.e. minimize perplexity = maximize likelihood)
- (weighted) average branching factor

Qualitatively: Prefers real sentences

(sequences that are more grammatical, make sense).

Lanyuaye

ın ti

Perplexity

Model

Thus, perplexity

Apply Chain Rule: PP(W)

for Bigrams:

 $P(w_1w_2...w_N)$

Evaluation Summary

- Use *training set* to "learn model" (i.e. to store counts, from which we can derive probability for any $p(w_i \mid w_{i-1}, w_{i-2})$
- Use held-out testing set to evaluate
- Perplexity -- metric for scoring how well learned model works on test.
 (an *intrinsic* evaluation)

Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Evaluation Summary

- Use training set to "learn model" (i.e. to store counts, from which we can derive probability for any $p(w_i \mid w_{i-1}, w_{i-2})$
- Use held-out testing set to evaluate
- Perplexity -- metric for scoring how well learned model works on test.
 (an *intrinsic* evaluation)
- Extrinsic evaluation: Test on task accuracies
 - machine translation: does it improve translation accuracy
 - autocomplete: do users like the suggestions
 - speech recognition: does it improve transcription accuracy
 - spelling corrector, etc...

Practical Considerations for LMs:

- Use log probability for assessing perplexity to keep numbers reasonable and save computation.
 (uses addition rather than multiplication)
- Use Out-of-vocabulary (OOV) (unknown word token)
 Choose a minimum frequency or total vocabulary size and mark as <OOV>
- Sentence start and end: <s> this is a sentence </s> Advantage: models word probability at beginning or end.

Practical Considerations for LMs:

- Use log probability for assessing perplexity to keep numbers reasonable and save computation. (uses addition rather than multiplication)
- Use Out-of-vocabulary (OOV) (unknown word token)
 Choose a minimum frequency or total vocabulary size and mark as <OOV>
- Sentence start and end: <s> this is a sentence </s>
 Advantage: models word probability at beginning or end.
- This is also "auto-regressive" or generative language modeling.
 "auto-encoding" using context on both sides use for creating embeddings.

Problem?

Problem?

- High probabilities in context of rare words
- Zero probabilities for when count was zero (but is that realistic?)

Zeros!

first word

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Zeros and Smoothing

first word \(\)

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace ("Add one") smoothing: add 1 to all counts

Unsmoothed probs

 λ second word (Xi)

first $word(Xi-1)$ $P(Xi \mid Xi-1)$										
	i	want	to	eat	chinese	food	lunch	spend		
i	0.002	0.33	0	0.0036	0	0	0	0.00079		
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011		
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087		
eat	0	0	0.0027	0	0.021	0.0027	0.056	0		
chinese	0.0063	0	0	0	0	0.52	0.0063	0		
food	0.014	0	0.014	0	0.00092	0.0037	0	0		
lunch	0.0059	0	0	0	0	0.0029	0	0		
spend	0.0036	0	0.0036	0	0	0	0	0		

Example from (Jurafsky, 2017)

Smoothed

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$
(vocabulary size)

first word(Xi-1) second word (Xi)

P(Xi | Xi-1)

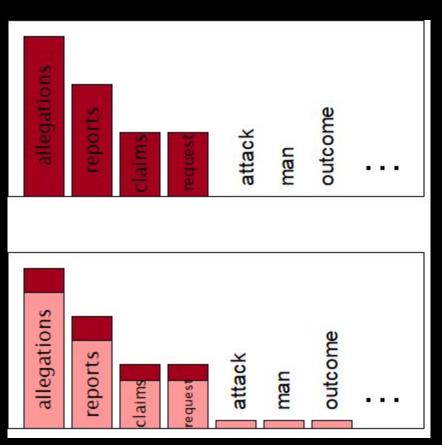
	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Why Smoothing? Generalizes

Original

With Smoothing

(Example from Jurafsky / Originally Dan Klein)



Why Smoothing? Generalizes

Add-one is blunt: can lead to very large changes.

More Advanced:

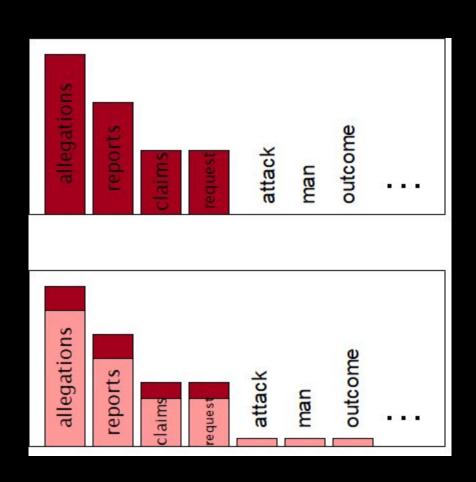
Informative Prior:

Add unigram probability

More advanced:

Good-Turing Smoothing
 Kneser-Nay Smoothing

^ outside scope for now. We will eventually cover, even stronger, deep learning based models.



Example how to produce language generator

Training:

- Count unigrams, bigrams, and trigrams
- Create function to calculate probabilities for unigram, bigram, and trigram models (over training, with smoothing)

Example how to produce language generator

Training:

- Count unigrams, bigrams, and trigrams
- Create function to calculate probabilities for unigram, bigram, and trigram models (over training, with smoothing)

Generation

 Create function: Given previous word or previous 2 words, take a random draw from what words are most likely to be next.

Average Trigram model and bigram when possible (high counts)

Backing off to bigram or even unigram, if necessary

Language Modeling Summary

- Two versions of assigning probability to sequence of words
- Applications
- The Chain Rule, The Markov Assumption: $P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-k}, X_{i-(k-1)}, ..., X_i)$
- Training a unigram, bigram, trigram model based on counts
- Evaluation: Perplexity
- Zeros, Low Counts, and Generalizability
- Add-one smoothing

Limitation: Long distance dependencies

The horse which was raced past the barn tripped.